Part Number Hot Search : 
NJM1431A 60N60SF 4C01BU C1921 EP110 SD211 AF2301 B7105
Product Description
Full Text Search
 

To Download IRFP26N60L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFP26N60L  smps mosfet hexfet   power mosfet features and benefits ? 

 
 


 
   


   ?  
 

 



  ? 
!
  

 
  ? "
 
  
 

 
 
   to-247ac 12/30/02 www.irf.com 1 s d g applications ? 
  
 
#$ ? % 


$ 
 ? &   
$ 
 ? # 
'   
   v dss r ds(on) typ. trr typ. i d 600v 210m ? 170ns 26a absolute maximum ratings parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 26 i d @ t c = 100 c continuous drain current, v gs @ 10v 17 a i dm pulsed drain current  100 p d @t c = 25c power dissipation 470 w linear derating factor 3.8 w/c v gs gate-to-source voltage 30 v dv/dt peak diode recovery dv/dt  21 v/ns t j operating junction and -55 to + 150 t stg storage temperature range c soldering temperature, for 10 seconds 300 (1.6mm from case ) mounting torque, 6-32 or m3 screw 1.1(10) nm (lbfin) diode characteristics symbol parameter min. typ. max. unit s conditions i s continuous source current ??? ??? 26 mosfet symbol (body diode) a showing the i sm pulsed source current ??? ??? 100 integral reverse (body diode)   p-n junction diode. v sd diode forward voltage ??? ??? 1.5 v t j = 25c, i s = 26a, v gs = 0v  t rr reverse recovery time ??? 170 250 ns t j = 25c, i f = 26a ??? 210 320 t j = 125c, di/dt = 100a/s  q rr reverse recovery charge ??? 670 1000 nc t j = 25c, i s = 26a, v gs = 0v  ??? 1050 1570 t j = 125c, di/dt = 100a/s  i rrm reverse recovery current ??? 7.3 11 a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld)
 2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature. (see fig. 11)   starting t j = 25c, l = 1.7mh, r g = 25 ? , i as = 26a, dv/dt = 21v/ns. (see figure 12a)  i sd 26a, di/dt 480a/s, v dd v (br)dss , t j 150c.  pulse width 300s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . c oss eff.(er) is a fixed capacitance that stores the same energy as c oss while v ds is rising from 0 to 80% v dss . static @ t j = 25c (unless otherwise specified) s y mbol parameter min. t y p. max. units v (br)dss drain-to-source breakdown voltage 600 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.33 ??? v/c r ds(on) static drain-to-source on-resistance ??? 210 250 m ? v gs(th) gate threshold voltage 3.0 ??? 5.0 v i dss drain-to-source leakage current ??? ??? 50 a ??? ??? 2.0 ma i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 0.8 ??? ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 13 ??? ??? s q g total gate charge ??? ??? 180 q gs gate-to-source charge ??? ??? 61 nc q gd gate-to-drain ("miller") charge ??? ??? 85 t d(on) turn-on delay time ??? 31 ??? t r rise time ??? 110 ??? ns t d(off) turn-off delay time ??? 47 ??? t f fall time ??? 42 ??? c iss input capacitance ??? 5020 ??? c oss output capacitance ??? 450 ??? c rss reverse transfer capacitance ??? 34 ??? pf c oss eff. effective output capacitance ??? 230 ??? c oss eff. (er) effective output capacitance ??? 170 ??? (energy related) avalanche characteristics symbol parameter typ. units e as sin g le pulse avalanche ener gy  ??? mj i ar avalanche current   ??? a e ar repetitive avalanche ener gy  ??? mj thermal resistance symbol parameter typ. units r jc junction-to-case ??? r cs case-to-sink, flat, greased surface 0.24 c/w r ja junction-to-ambient ??? 40 max. 0.27 ??? v ds = 25v ? = 1.0mhz, see fig. 5 26 47 max. 570 v gs = 0v,v ds = 0v to 480v  i d = 26a r g = 4.3 ? v gs = 10v, see fig. 11a & 11b  v gs = 0v i d = 26a v ds = 480v v gs = 10v, see fig. 7 & 15  v dd = 300v v gs = 30v f = 1mhz, open drain conditions v ds = 50v, i d = 16a v gs = -30v v ds = v gs , i d = 250a v ds = 600v, v gs = 0v v ds = 480v, v gs = 0v, t j = 125c conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 16a 
 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.5v 20s pulse width tj = 25c vgs top 15v 12v 10v 8.0v 7.0v 6.5v 6.0v bottom 5.5v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 26a v gs = 10v 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 v gs , gate-to-source voltage (v) 0.10 1.00 10.00 100.00 1000.00 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 50v 20s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 5.5v 20s pulse width tj = 150c vgs top 15v 12v 10v 8.0v 7.0v 6.5v 6.0v bottom 5.5v
 4 www.irf.com fig 5. typical capacitance vs. drain-to-source voltage 1 10 100 1000 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss fig 8. typical source-drain diode forward voltage 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v fig 7. typical gate charge vs. gate-to-source voltage 0 25 50 75 100 125 150 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 480v v ds = 300v v ds = 120v i d = 26a fig 6. typ. output capacitance stored energy vs. v ds 0 100 200 300 400 500 600 700 v ds, drain-to-source voltage (v) 0 5 10 15 20 25 30 e n e r g y ( j )
 www.irf.com 5 fig 9. maximum safe operating area 1 10 100 1000 10000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 150c single pulse fig 10. maximum drain current vs. case temperature 25 50 75 100 125 150 t c , case temperature (c) 0 5 10 15 20 25 30 i d , d r a i n c u r r e n t ( a )   
 1     0.1 %            fig 11a. switching time test circuit + - v ds 90% 10% v gs t d(on) t r t d(off) t f fig 11b. switching time waveforms
 6 www.irf.com fig 12. maximum effective transient thermal impedance, junction-to-case 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 fig 13. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 2.0 3.0 4.0 5.0 6.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a
 www.irf.com 7 fig 14a. maximum avalanche energy vs. drain current fig 14c. unclamped inductive waveforms 25 50 75 100 125 150 starting t j , junction temperature (c) 0 150 300 450 600 750 900 1050 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 12a 16a bottom 26a d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 15a. gate charge test circuit fig 15b. basic gate charge waveform fig 14b. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v q g q gs q gd v g charge  
 8 www.irf.com p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 16. for n-channel hexfet   power mosfets
  
     
              ?     ?  ?    !" ## ? $  
%! !%   ?  &' !  ? ( !)  ?  &* ! %!   

 www.irf.com 9 
     
    
         lead assignments notes: - d - 5.30 (.209) 4.70 (.185) 2.50 (.089) 1.50 (.059) 4 3x 0.80 (.031) 0.40 (.016) 2.60 (.102) 2.20 (.087) 3.40 (.133) 3.00 (.118) 3x 0.25 (.010) m ca s 4.30 (.170) 3.70 (.145) - c - 2x 5.50 (.217) 4.50 (.177) 5.50 (.217) 0.25 (.010) 1.40 (.056) 1.00 (.039) 3.65 (.143) 3.55 (.140) d m m b - a - 15.90 (.626) 15.30 (.602) - b - 1 23 20.30 (.800) 19.70 (.775) 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2x 2x 5.45 (.215) 1 dimensioning & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 conforms to jedec outline to-247-ac. 1 - gate 2 - drain 3 - source 4 - drain data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/02 to-247ac package is not recommended for surface mount application. 
  

  
 

      
     
                           
      
 
    !    


▲Up To Search▲   

 
Price & Availability of IRFP26N60L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X